Monitoring hidden disaster in India’s capital from house: implications of unsustainable groundwater use


  • Deltras. Sinking cities: An built-in method in direction of options. https://www.deltares.nl/app/uploads/2015/09/Sinking-cities.pdf (2013).

  • Krishna, V., Karanam, R., Motagh, M. & Jain, Ok. Land subsidence in Jharia Coalfields , Jharkhand , India—Detection , estimation and evaluation utilizing persistent scatterer interferometry. 21118 (2020).

  • Poland, J. F. & Davis, G. H. Land subsidence resulting from withdrawal of fluids. Rev. Eng. Geol. 2, 187–269 (1969).

    Google Scholar 

  • Yang, C. et al. Floor deformation revealed by Sentinel-1 MSBAS-InSAR time-series over Karamay Oilfield, China. Distant Sens. 11, 2027 (2019).

    Google Scholar 

  • Gong, H. et al. Lengthy-term groundwater storage adjustments and land subsidence growth within the North China Plain (1971–2015). Hydrogeol. J. 26, 1417–1427 (2018).

    Google Scholar 

  • Nawaz, M. F., Bourrié, G. & Trolard, F. Soil compaction impression and modelling. A assessment. Agron. Maintain. Dev. 33, 291–309 (2013).

    Google Scholar 

  • Kaiser, A. et al. The M w 6.2 Christchurch earthquake of February 2011: preliminary report. N. Z. J. Geol. Geophys. 55, 67–90 (2012).

    Google Scholar 

  • Rogers, C. D. F., Dijkstra, T. A. & Smalley, I. J. Hydroconsolidation and subsidence of loess: Research from China, Russia, North America and Europe. Eng. Geol. 37, 83–113 (1994).

    Google Scholar 

  • USGS. https://www.usgs.gov/special-topic/water-science-school/science/land-subsidence?qt-science_center_objects=0#qt-science_center_objects

  • Haghshenas Haghighi, M. & Motagh, M. Floor floor response to steady compaction of aquifer system in Tehran, Iran: Outcomes from a long-term multi-sensor InSAR evaluation. Distant Sens. Environ. 221, 534–550 (2019).

    Google Scholar 

  • Osmanoǧlu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E. & Jiang, Y. Mexico Metropolis subsidence noticed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 13, 1–12 (2011).

    Google Scholar 

  • Castellazzi, P. et al. Groundwater deficit and land subsidence in central mexico monitored by grace and RADARSAT-2. Int. Geosci. Distant Sens. Symp. 2597–2600 (2014). https://doi.org/10.1109/IGARSS.2014.6947005

  • Chaussard, E., Wdowinski, S., Cabral-Cano, E. & Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Distant Sens. Environ. 140, 94–106 (2014).

    Google Scholar 

  • Khorrami, M., Abrishami, S., Maghsoudi, Y., Alizadeh, B. & Perissin, D. Excessive subsidence in a populated metropolis (Mashhad) detected by PSInSAR contemplating groundwater withdrawal and geotechnical properties. Sci. Rep. 10, 1–16 (2020).

    Google Scholar 

  • Motagh, M. et al. Land subsidence in Iran brought on by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008).

    Google Scholar 

  • Motagh, M. et al. Land subsidence in Mashhad Valley, northeast Iran: Outcomes from InSAR, levelling and GPS. Geophys. J. Int. 168, 518–526 (2007).

    Google Scholar 

  • Motagh, M. et al. Quantifying groundwater exploitation induced subsidence within the Rafsanjan plain, southeastern Iran, utilizing InSAR time-series and in situ measurements. Eng. Geol. 218, 134–151 (2017).

    Google Scholar 

  • Goorabi, A., Maghsoudi, Y. & Perissin, D. Monitoring of the bottom displacement within the Isfahan, Iran, metropolitan space utilizing persistent scatterer interferometric artificial aperture radar approach. J. Appl. Distant Sens. 14, 1 (2020).

    Google Scholar 

  • Hu, L. et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 82, 101886 (2019).

    Google Scholar 

  • Zhou, C. et al. Decreased charge of land subsidence since 2016 in Beijing, China: Proof from Tomo-PSInSAR utilizing RadarSAT-2 and Sentinel-1 datasets. Int. J. Distant Sens. 41, 1259–1285 (2020).

    Google Scholar 

  • Ng, A. H., Ge, L. & Li, X. Monitoring floor deformation in Beijing, China with persistent scatterer SAR interferometry. 375–392 (2012). https://doi.org/10.1007/s00190-011-0525-4

  • Suganthi, S. & Elango, L. Estimation of groundwater abstraction induced land subsidence by SBAS approach. J. Earth Syst. Sci. 129, 46 (2020).

    Google Scholar 

  • Chatterjee, R. S. et al. Evaluation of land subsidence phenomenon in Kolkata metropolis, India utilizing satellite-based D-InSAR approach. Curr. Sci. 93, 85–90 (2007).

    Google Scholar 

  • Piesse, M. world water provide and demand tendencies level in direction of rising water insecurity. International Meals and Water Crises Analysis Programme 1–8 (2020).

  • Holzer, T. L. & Galloway, D. L. Impacts of land subsidence brought on by withdrawal of underground fluids in the US. in People as Geologic Brokers (Geological Society of America, 2005). https://doi.org/10.1130/2005.4016(08)

  • Gabriel, A. Ok., Goldstein, R. M. & Zebker, H. A. Mapping small elevation adjustments over giant areas: Differential radar interferometry. J. Geophys. Res. 94, 9183 (1989).

    Google Scholar 

  • Castellazzi, P. et al. Quantitative mapping of groundwater depletion on the water administration scale utilizing a mixed GRACE/InSAR method. Distant Sens. Environ. 205, 408–418 (2018).

    Google Scholar 

  • Cigna, F. & Tapete, D. Current-day land subsidence charges, floor faulting hazard and danger in Mexico Metropolis with 2014–2020 Sentinel-1 IW InSAR. Distant Sens. Environ. 253, 112161 (2021).

    Google Scholar 

  • Chaussard, E., Havazli, E., Fattahi, H., Cabral-Cano, E. & Solano-Rojas, D. Over a century of sinking in Mexico Metropolis: No hope for important elevation and storage capability restoration. J. Geophys. Res. Stable Earth https://doi.org/10.1029/2020JB020648 (2021).

    Article 

    Google Scholar 

  • Poreh, D., Pirasteh, S. & Cabral-Cano, E. Assessing subsidence of Mexico Metropolis from InSAR and LandSat ETM+ with CGPS and SVM. Geoenvironmental Disasters 8, 7 (2021).

    Google Scholar 

  • Khoshlahjeh Azar, M., Hamedpour, A., Maghsoudi, Y. & Perissin, D. Evaluation of the deformation habits and sinkhole danger in Kerdabad, Iran utilizing the PS-InSAR technique. Distant Sens. 13, 2696 (2021).

    Google Scholar 

  • Karimzadeh, S. & Matsuoka, M. Floor displacement in East Azerbaijan Province, Iran, revealed by L-band and C-band InSAR analyses. Sensors 20, 6913 (2020).

    PubMed Central 

    Google Scholar 

  • Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise within the Mekong Delta, Vietnam. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/8/084010 (2014).

    Article 

    Google Scholar 

  • Dang, V. Ok., Doubre, C., Weber, C., Gourmelen, N. & Masson, F. Latest land subsidence brought on by the fast city growth within the Hanoi area (Vietnam) utilizing ALOS InSAR knowledge. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-14-657-2014 (2014).

  • Abidin, H. Z. et al. Land subsidence of Jakarta (Indonesia) and its relation with city growth. Nat. Hazards 59, 1753–1771 (2011).

    Google Scholar 

  • Chaussard, E., Amelung, F., Abidin, H. & Hong, S. H. Sinking cities in Indonesia: ALOS PALSAR detects fast subsidence resulting from groundwater and fuel extraction. Distant Sens. Environ. https://doi.org/10.1016/j.rse.2012.10.015 (2013).

    Article 

    Google Scholar 

  • Iahs, P. Examine on the chance and impacts of land subsidence in Jakarta. 115–120 (2015). https://doi.org/10.5194/piahs-372-115-2015

  • Hanne, D., White, N. & Lonergan, L. Subsidence analyses from the Betic Cordillera, southeast Spain. Basin Res. https://doi.org/10.1046/j.1365-2117.2003.00192.x (2003).

    Article 

    Google Scholar 

  • Mateos, R. M. et al. Multiband PSInSAR and long-period monitoring of land subsidence in a strategic detrital aquifer (Vega de Granada, SE Spain): An method to assist administration selections. J. Hydrol. 553, 71–87 (2017).

    Google Scholar 

  • Li, R., Zhao, Z., Duan, M., Wang, Z. & Wang, P. An evaluation of floor subsidence in Chiba utilizing PSInSAR approach. in Worldwide Archives of the Photogrammetry, Distant Sensing and Spatial Info Sciences—ISPRS Archives (2015). https://doi.org/10.5194/isprsarchives-XL-7-W4-81-2015

  • Buckley, S. M. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. https://doi.org/10.1029/2002jb001848 (2003).

    Article 

    Google Scholar 

  • Qu, F., Lu, Z., Kim, J.-W. & Zheng, W. Determine and monitor development faulting utilizing InSAR over Northern Higher Houston, Texas, USA. Distant Sens. 11, 1498 (2019).

    Google Scholar 

  • Manuel, J. et al. Measuring city subsidence within the Rome Metropolitan Space (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry (2019). https://doi.org/10.3390/rs11020129

  • Cigna, F. & Tapete, D. Sentinel-1 large knowledge processing with P-SBAS InSAR within the geohazards exploitation platform: An experiment on coastal land subsidence and landslides in Italy. Distant Sens. 13, 885 (2021).

    Google Scholar 

  • Chatterjee, R. S., Thapa, S., Singh, Ok. B., Varunakumar, G. & Raju, E. V. R. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling strategies. J. Earth Syst. Sci. 124, 1359–1376 (2015).

    Google Scholar 

  • Selvakumaran, S., Plank, S., Geiß, C., Rossi, C. & Middleton, C. Distant monitoring to foretell bridge scour failure utilizing Interferometric Artificial Aperture Radar (InSAR) stacking strategies. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2018.07.004 (2018).

    Article 

    Google Scholar 

  • Selvakumaran, S. et al. Mixed InSAR and terrestrial structural monitoring of bridges. IEEE Trans. Geosci. Distant Sens. https://doi.org/10.1109/TGRS.2020.2979961 (2020).

    Article 

    Google Scholar 

  • Selvakumaran, S., Webb, G. T., Bennetts, J., Middleton, C. R. & Rossi, C. Waterloo bridge monitoring: Evaluating measurements from earth and house. in Worldwide Convention on Sensible Infrastructure and Development 2019, ICSIC 2019: Driving Information-Knowledgeable Resolution-Making (2019). https://doi.org/10.1680/icsic.64669.639

  • Shamshiri, R., Motagh, M., Baes, M. & Sharifi, M. A. Deformation evaluation of the Lake Urmia causeway (LUC) embankments in northwest Iran: Insights from multi-sensor interferometry artificial aperture radar (InSAR) knowledge and finite component modeling (FEM). J. Geod. 88, 1171–1185 (2014).

    Google Scholar 

  • Gao, M. et al. InSAR time-series investigation of long-term floor displacement at Beijing Capital Worldwide Airport, China. Tectonophysics https://doi.org/10.1016/j.tecto.2016.10.016 (2016).

    Article 

    Google Scholar 

  • Fernández-torres, E., Cabral-cano, E., Solano-rojas, D. & Havazli, E. Land Subsidence danger maps and InSAR primarily based angular distortion structural vulnerability evaluation: An instance in Mexico Metropolis, 583–587 (2020). https://doi.org/10.5194/piahs-382-583-2020

  • Goense, A. L. A Sinking Metropolis (TU Delft, 2016).

  • Herrera-García, G. et al. Mapping the worldwide risk of land subsidence. Science 371, 34–36 (2021).

    PubMed 

    Google Scholar 

  • Census2011. Delhi Inhabitants 2011. https://censusindia.gov.in/pca/pcadata/Houselisting-housing-Delhi.html (2011).

  • United Nations. World Urbanization Prospects. https://inhabitants.un.org/wup/Publications/Information/WUP2018-Report.pdf (2018).

  • Sharma, Renu Singh, S.P, Bharti, N. Financial Survey of Delhi 2018–2019. http://delhiplanning.nic.in/content material/economic-survey-delhi-2018-19 (2019).

  • Financial Survey of Delhi. Financial Survey of Delhi 2016–17. https://delhiplanning.nic.in/websites/default/recordsdata/ch-13.pdf.

  • Majumder, S. Water mafia: Why Delhi is shopping for water on black market. BBC Information (2015).

  • PIB Delhi. Water Conservation Payment Launched for the First Time. Ministry of Water Assets, River Growth and Ganga Rejuvenation https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1555824 (2018).

  • Kadiyan, N. et al. Evaluation of groundwater depletion-induced land subsidence and characterisation of damaging cracks on homes: A case research in Mohali-Chandigarh space, India (2021).

  • Umar, S. U. Ok., Umar, D. H. Ok. & Haudhary, S. U. Ok. U. C. Land subsidence mapping and monitoring utilizing modi B ed persistent scatterer interferometric artificial aperture radar in Jharia Coal Area, India, 0123456789 (2020).

  • Malik, Ok., Kumar, D. & Perissin, D. Evaluation of subsidence in Delhi NCR resulting from groundwater depletion utilizing TerraSAR-X and chronic scatterers interferometry. Imaging Sci. J. 67, 1–7 (2019).

    Google Scholar 

  • Chatterjee, R. S. et al. Subsidence of Kolkata (Calcutta) Metropolis, India in the course of the Nineties as noticed from house by Differential Artificial Aperture Radar Interferometry (D-InSAR) approach. Distant Sens. Environ. 102, 176–185 (2006).

    Google Scholar 

  • Karanam, V., Motagh, M., Garg, S. & Jain, Ok. Multi-sensor distant sensing evaluation of coal hearth induced land subsidence in Jharia Coalfields, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 102, 102439 (2021).

    Google Scholar 

  • Nair, A. S. & Indu, J. Altering groundwater storage pattern of India after extreme drought. Int. J. Distant Sens. 41, 7565–7584 (2020).

    Google Scholar 

  • Nair, A. S. & Indu, J. Evaluation of groundwater sustainability and figuring out elements inducing groundwater depletion in India. Geophys. Res. Lett. 48, e2020GL087255 (2021).

    Google Scholar 

  • Ferretti, A., Prati, C. & Rocca, F. Everlasting scatterers in SAR interferometry. IEEE Trans. Geosci. Distant Sens. 39, 8–20 (2001).

    Google Scholar 

  • Hooper, A., Zebker, H., Segall, P. & Kampes, B. A brand new technique for measuring deformation on volcanoes and different pure terrains utilizing InSAR persistent scatterers. Geophys. Res. Lett. 31, 1–5 (2004).

    Google Scholar 

  • Authorities of NCT of Delhi. District South West Delhi. District South West Delhi. https://dmsouthwest.delhi.gov.in/about-district/ (2019)

  • Joshi, M. Rainwater harvesting made simple at DJB centres. Hindustan Instances. https://www.hindustantimes.com/delhi/rainwater-harvesting-made-easy-at-djb-centres/story-coAGELCN3f2DZvqylk4ibN.html (2017).

  • Jain, A. Hope Springs in Dwarka. The Hindu. https://www.thehindu.com/information/cities/Delhi/hope-springs-in-dwarka/article7511079.ece (2015).

  • Wang, G. et al. Land subsidence and uplift associated to groundwater extraction in Wuxi, China. Q. J. Eng. Geol. Hydrogeol. 53, 609–619 (2020).

    Google Scholar 

  • Phien-wej, N., Giao, P. H. & Nutalaya, P. Area experiment of synthetic recharge by means of a properly close to land subsidence management. Eng. Geol. 50, 187–201 (1998).

    Google Scholar 

  • Kumar, A. ‘In Faridabad, practically half of all water connections are unlawful’. The Hindu. https://www.thehindu.com/information/cities/Delhi/in-faridabad-nearly-half-of-all-water-connections-are-illegal/article30654885.ece (2020).

  • Ziwen, Z., Liu, Y., Li, F., Li, Q. & Ye, W. Land subsidence monitoring primarily based on InSAR and inversion of aquifer parameters. J. Wirel. Commun. Netw. https://doi.org/10.1186/s13638-019-1602-2 (2019).

    Article 

    Google Scholar 

  • Leake, S. A. Land Subsidence from ground-water pumping. Human impacts on Panorama, U.S. Geological Survey. https://geochange.er.usgs.gov/sw/adjustments/anthropogenic/subside/

  • Sharma, V. Why Delhi goes underneath water each monsoon. Hindustan Instances. https://www.hindustantimes.com/delhi-news/why-delhi-goes-under-water-every-monsoon/story-f519DDlARzq3TrTv1ind0L.html (2018).

  • Kumar, Ok. Work on Outdated Delhi-Gurugram highway to renew quickly. Hindustan Instances. https://www.hindustantimes.com/gurgaon/work-on-old-delhi-gurugram-road-to-resume-soon/story-w8Gv4n4DlDDOELPoKPfQQM.html (2018).

  • Ward, P. J., Marfai, M. A., Yulianto, F., Hizbaron, D. R. & Aerts, J. C. J. H. Coastal inundation and injury publicity estimation: a case research for Jakarta. Nat. Hazards 56, 899–916 (2011).

    Google Scholar 

  • Marfai, M. A. & King, L. Tidal inundation mapping underneath enhanced land subsidence in Semarang, Central Java Indonesia. Nat. Hazards 44, 93–109 (2008).

    Google Scholar 

  • Wang, J., Gao, W., Xu, S. & Yu, L. Analysis of the mixed danger of sea stage rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Change 115, 537–558 (2012).

    Google Scholar 

  • Kumar, M., Sharif, M. & Ahmed, S. Flood danger administration methods for nationwide capital territory of Delhi, India. ISH J. Hydraul. Eng. 25, 248–259 (2019).

    Google Scholar 

  • Sato, C. H. & Michiko Nishino, J. Land subsidence and groundwater administration in Tokyo. Int. Rev. Environ. Strateg. Spec. Featur. Groundw. Manag. Coverage 6, 403–424 (2006).

  • Chandigarh CGWB. Aquifer mapping and administration plan. (2015).

  • Central Floor Water Board—GOI. Aquifer Mapping and Floor Water Administration Plan of NCT of Delhi, 1–179 (2016).

  • Aboutorabi, S. Interferometric artificial aperture radar temporal de-correlation (2016). https://doi.org/10.13140/RG.2.2.19850.06089

  • Zebker, H. A. & Villasenor, J. Decorrelation in interferometric radar echoes, 1–19 (1992).

  • Hooper, A. & Zebker, H. A. Part unwrapping in three dimensions with utility to InSAR time collection. J. Choose. Soc. Am. A 24, 2737 (2007).

    Google Scholar 

  • González, P. J. et al. The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 42, 9239–9246 (2015).

    Google Scholar 

  • Ferretti, A., Prati, C. & Rocca, F. Nonlinear subsidence charge estimation utilizing everlasting scatterers in differential SAR interferometry. IEEE Trans. Geosci. Distant Sens. 38, 2202–2212 (2000).

    Google Scholar 

  • Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A. & Laczniak, R. J. Sensing the ups and downs of Las Vegas: InSAR reveals structural management of land subsidence and aquifer-system deformation. Geology 27, 483 (1999).

    Google Scholar 

  • Hooper, A., Bekaert, D., Spaans, Ok. & Arıkan, M. Latest advances in SAR interferometry time collection evaluation for measuring crustal deformation. Tectonophysics 514–517, 1–13 (2012).

    Google Scholar 

  • Bekaert, D. TRAIN—Toolbox for Decreasing Atmospheric InSAR Noise. 1–40 (2015). https://doi.org/10.1029/2014JB011558



  • Supply hyperlink

    Previous post Gold price Rs 72.8 lakh seized from 3 ladies at Hyderabad airport- The New Indian Categorical
    Next post Greatest New Motion pictures Premiering in February 2022